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Abstract

Community detection in online social networks is typically based
on the analysis of the explicit connections between users, such as
“friends” on Facebook and “followers” on Twitter. But online users
often have hundreds or even thousands of such connections, and many
of these connections do not correspond to real friendships or more
generally to accounts that users interact with. We claim that commu-
nity detection in online social networks should be question-oriented
and rely on additional information beyond the simple structure of the
network. The concept of ‘community’ is very general, and different
questions such as “who do we interact with?” and “with whom do we
share similar interests?” can lead to the discovery of different social
groups. In this paper we focus on three types of communities beyond
structural communities: activity-based, topic-based, and interaction-
based. We analyze a Twitter dataset using three different weightings
of the structural network meant to highlight these three community
types, and then infer the communities associated with these weight-
ings. We show that the communities obtained in the three weighted
cases are highly different from each other, and from the communities
obtained by considering only the unweighted structural network. Our
results confirm that asking a precise question is an unavoidable first
step in community detection in online social networks, and that dif-
ferent questions can lead to different insights into the network under
study.
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Introduction
Networks play a central role in online social media services like Twitter, Facebook,
and Google+. These services allow a user to interact with others based on the online
social network they curate through a process known as contact filtering [5]. For ex-
ample, ‘friends’ on Facebook represent reciprocal links for sharing information, while
‘followers’ on Twitter allow a single user to broadcast information in a one-to-many
fashion. Central to all of these interactions is the fact that the structure of the social
network influences how information can be broadcast or diffuse through the service.

Because of the importance of structural networks in online social media, a large
amount of work in this area has focused on using structural networks for community
detection. Here, by ‘community’ we mean the standard definition from the literature on
social networks: a collection of nodes (users) within the network who are more highly
connected to each other than to nodes (users) outside of the community [33]. For in-
stance, in [18], the authors use a follower network to determine communities within
Twitter, and note that conversations tend to occur within these communities. The ap-
proach of focusing on structural networks makes sense for ‘real-world’ sociological
experiments, where obtaining additional information about user interactions may be
expensive and time-consuming. However, with the prevalence of large, rich data sets
for online social networks, additional information beyond the structure alone may be
incorporated, and these augmented networks more realistically reflects how users in-
teract with each other on social media services [14].

A large body of work exists on methods for automatic detection of communities
within networks [32, 33, 39, 3, 24]. See [12] for a recent review. All these methods be-
gin with a given network, and then attempt to uncover structure present in the network,
i.e., they are agnostic to how the network was constructed. As opposed to this agnostic
analysis, we propose and illustrate the importance of a question-focused approach. We
believe that in order to understand the communities present in a data set, it is impor-
tant to begin with a clear picture of the community type under consideration, and then
perform the network collection and community detection with that community type in
mind.

This is especially true for social network analysis. In online social networks, a
‘community’ could refer to several possible structures. The simplest definition of com-
munity, as we have seen, might stem from the network of explicit connections between
users on a service (friends, followers, etc.). On small time scales, these connections
are more or less static, and we might instead determine communities based on who is
talking to whom, providing a more dynamic picture. On a more abstract level, a user
might consider themselves part of a community of people discussing similar topics.
We might also define communities as collections of people who exhibit similar behav-
iors on a service, as in communities of teenagers vs. elderly users. We can characterize
these types of communities based on the types of questions we might ask about them:

• Structure-based: Who have you stated you are friends with? Who do you fol-
low?

• Activity-based: Who do you act like?
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• Topic-based: What do you talk about?

• Interaction-based: Who do you communicate with?

This is not meant to be an exhaustive list, but rather a list of some of the more com-
mon types of communities observed in social networks. We propose looking at when
and how communities motivated by these different questions overlap, and whether dif-
ferent approaches to asking the question, “What community are you in?” leads to dif-
ferent insights about a social network. For example, a user on Twitter might connect
mostly with computational social scientists, talk mostly about machine learning, inter-
act solely with close friends (who may or may not be computational social scientists),
and utilize the service only on nights and weekends. Each of these different ‘profiles’
of the user highlight different views of the user’s social network, and represent differ-
ent types of communities. We divide our approaches into four categories based on the
questions outlined above: structure-based, activity-based, topic-based, and interaction-
based. The structure-based approach, as outlined above, is most common, and for our
data relies on reported follower relationships.

The activity-based approach is motivated by the question of which individuals act in
a homogeneous manner, e.g., which users use a service in a similar way. The main tools
for answering this question stem from information theory. We consider each user on an
online social network as an information processing unit, but ignore the content of their
messages. In particular, our current activity-based approach was originally motivated
by a methodology used to detect functional communities within populations of neu-
rons [42]. Similar information theoretic approaches have been used with data arising
from online social networks to gain insight into local user behavior [9], to detect com-
munities based on undirected information flow [8], and to perform link detection [44].

Our topic-based and interaction-based approaches, in contrast to the activity-based
approach, rely on the content of a user’s interactions and ignore their temporal com-
ponents. The content contains a great deal of information about the communication
between users. For example, a popular approach to analyzing social media data is to
use Latent Dirichlet Allocation (LDA) to infer topics based on the prevalence of words
within a status [47, 28]. The LDA model can then be used to infer distributions over
latent topics, and the similarity of two users with respect to topics may be defined in
terms of the distance between their associated topic distributions. Because our focus is
not on topic identification, we apply a simpler approach using hashtags as a proxy for
topics [2, 43]. We can then define the similarity of two users in terms of their hashtags,
and use this similarity to build a topic-based network.

Finally, the interaction-based approach relies on the meta-data and text of messages
to identify who a user converses with on the social media service. On Twitter, we can
use mentions (indicating a directed communication) and retweets (indicating endorse-
ment of another user) to identify conversation. Moreover, we can define a directed
influence between two users by considering the attention paid to that user compared to
all other users. This allows us to generate a network based on conversations and user
interactions.

The activity-based, topic-based, and interaction-based networks allow us to build a
more complete picture of the latent social network present in online social media, as
opposed to the explicit social network indicated by structural links. In this paper, we

3



explore the relation between these various possible networks and their corresponding
communities. We begin by describing the methodologies used to generate the various
types of networks, and infer their community structure. We then explore how the com-
munities of users differ depending on the type of network used. Finally, we explore
how communication patterns differ across and within the different community types.

Related Work
Previous research on communities in social networks focused almost exclusively on
different network types in isolation. For example, an early paper considered the com-
munities, and associated statistics, inferred from a follower network on Twitter [18].
More recent work has considered the dynamics of communities based on structural
links in Facebook [34] and how structural communities impact mentions and retweets
on Twitter [14].

Information theoretic, activity-based approaches have been applied previously to
the analysis of networks arising in online social media [44, 8], but to the best of our
knowledge this is the first use of transfer entropy, an information theoretic measure of
directed influence, for community detection.

For interaction-based communities, [6] considered both mention and retweet net-
works in isolation for a collection of users chosen for their political orientation. In [10],
the authors construct a dynamic network based on simple time-windowed counts of
mentions and retweets, and use the evolution of this network to aid in community de-
tection.

There are two broad approaches to topic-based communities in the literature. [38]
used a set of users collected based on their use of a single hashtag, and tracked the
formation of follower and friendship links within that set of users. In [25], the authors
chose a set of topics to explore, and then seeded a network from a celebrity chosen
to exemplify a particular topic. Both approaches thus begin with a particular topic in
mind, and perform the data collection accordingly. Other approaches use probabilistic
models for the topics and treat community membership as a latent variable [45].

A notable exception to the analysis of isolated types of communities is [26], which
considered both structure-based and interaction-based communities on Twitter. How-
ever, this study focused on data collected based on particular topics (country music,
tennis, and basketball), and not on a generic subpopulation of Twitter users. Moreover,
it did not explore the differences in community structure resulting from the differ-
ent network weightings, and focuses on aggregate statistics (community size, network
statistics, etc.). Another notable exception is [19], where the authors used a tensor rep-
resentation of user data to incorporate retweet and hashtag information into a study of
the social media coverage of the Occupy Movement. The tensor can then be decom-
posed into factors in a generalization of the singular value decomposition of a matrix,
and these factors can be used to determine ‘salient’ users. However, this approach fo-
cused on data for a particular topic (the Occupy Movement) and did not collect users
based on a structural network.
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Methodology
In the following sections, we introduce the problem of community detection, and present
the data set used for our analyses. We then describe our methodology for construct-
ing the question-specific networks. In particular, we introduce an information theo-
retic method for activity-based communities, a retweet-mention statistic for interaction-
based communities, and a hashtag similarity metric for defining topic-based communi-
ties.

Community Detection
As discussed in the introduction, we adopt the standard definition of community: a
collection of nodes (users) within a network who are more densely connected to each
other than with the rest of the network. Structural community detection is a well stud-
ied problem and several different methods and algorithms have been proposed. For a
complete review of this subject we refer the reader to [12]. In this paper however we
focus on a class of networks and communities that is far less studied, in particular we
study networks which are both weighted and directed and communities within those
weighted directed networks that can (but need not) overlap. When selecting a detec-
tion algorithm we propose that all three (weight, direction, and overlap) are important
for the following reasons. First, communication on Twitter occurs in a directed manner,
with users broadcasting information to their followers. An undirected representation of
the network would ignore this fact, and could lead to communities composed of users
who do not actually share information. Second, we are interested in not just the struc-
ture of links but also in their function, and to capture this we use edge weightings which
must be incorporated into the community detection process. Finally, since people can
belong to multiple and possibly overlapping social (e.g., college friends, co-workers,
family, etc.) and topical (e.g., a user can be interested in both cycling and politics and
use the network to discuss the two topics with the two different communities) commu-
nities, we are interested in finding overlapping communities, rather than partitions of
the weighted directed network.

This last criterion in particular poses a problem because the majority of community
detection algorithms developed so far are built to find partitions of a network and few
are aimed at finding overlapping communities [1, 35, 46, 17, 30, 22, 11, 21]. Among
these methods, even fewer deal with directed or weighted networks. For example, the
work of [35] on clique percolation can account for both features, but not at the same
time. A recent method proposed by [24], OSLOM (Order Statistics Local Optimization
Method), is one of the first methods able to deal with all of these features simultane-
ously. Their method relies on a fitness function that measures the statistical significance
of clusters with respect to random fluctuations, and attempts to optimize this fitness
function across all clusters. For this paper we use OSLOM since it allowed us to detect
overlapping communities present in our weighted and directed network, and its authors
showed that it performs very well on various types of artificial benchmark graphs and
also on several real networks.
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The Initial Dataset and Network Construction
The dataset for this study consisted of the tweets of 15,000 Twitter users over a 9 week
period (from April 25th to June 25th 2011). The users are embedded in a network
collected by performing an intelligent breadth-first expansion from a random seed user.
In particular, once the seed user was chosen, the network was expanded to include
his/her followers, but only included users considered to be ‘active’ (i.e., users who
tweeted at least once per day over the past one hundred days). Network collection
continued in this fashion by considering the active followers of the active followers of
the seed, and so on until 15,000 users were added to the network.

Since our goal is to explore the functional communities of this network, we filter the
network down to the subset of users which actively interact with each other (e.g., via
retweets and mentions). We do this by measuring what we call (incoming/outgoing)
information events. We define an outgoing information event for a given user u as
either a mention made by u of another user in the network, or a retweet of one of
u’s tweets by another user in the network. The logic for this definition is as follows:
if u mentions a user v this can be thought of as u directly sending information to v,
and if u is retweeted by v then v received information from u and rebroadcast it to
their followers. In either case there was information outgoing from u which affected
the network in the some way. Analogously, we define the incoming information event
for u as either being mentioned by a different user in the network, or as retweeting
another user in the network. With (incoming/outgoing) information events defined we
filtered the network by eliminating all users with less than 9 outgoing and incoming
information events, i.e., less than one information event per type per week on average.
We then further restricted our analysis to the strong giant connected component of the
network built from the (incoming/outgoing) information filtered set of users. In this
study the link is directed from the user to the follower because this is the direction
in which the information (in the case of transfer entropy) or influence (in the case
of mention-retweets) flows. Thus, for a pair of users u and v, an edge av→u in the
structural network has weight 1 if user u follows v, and 0 otherwise. The final network
consists of 6,917 nodes and 1,481,131 edges.

Activity-Based Communities and Transfer Entropy
For the activity-based communities, we consider only the timing of each user’s tweets
and ignore any additional content. From this starting point, we can view the behavior
of a user u on Twitter as a point process, where at any instant t the user has either
emitted a tweet (Xt(u) = 1) or remained silent (Xt(u) = 0). This is the view of a
user’s dynamics taken in [44] and [9]. Thus, we reduce all of the information generated
by a user on Twitter to a time series {Xt(u)} where t ranges over the time interval for
which we have data (9 weeks in this case). Because status updates are only collected
in discrete, 1-second time intervals, it is natural to consider only the discrete times t =
1 s, 2 s, . . . , relative to a reference time. We can then compute the flow of information
between two users u and v by computing the transfer entropy between their time series
Xt(u) and Xt(v).

Let {Xt} and {Yt} be two strong-sense stationary stochastic processes. We use the
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notation Xt
t−k to denote the values of the stochastic process from time t − k to time

t, Xt
t−k = (Xt−k, Xt−(k−1), . . . , Xt−1, Xt). The lag-k transfer entropy of Y on X is

defined as

TE(k)
Y→X = H

[
Xt|Xt−1

t−k
]
−H

[
Xt|Xt−1

t−k , Y
t−1
t−k

]
, (1)

where

H
[
Xt|Xt−1

t−k
]
= −E

[
log2 p(Xt|Xt−1

t−k)
]

(2)

and

H
[
Xt|Xt−1

t−k , Y
t−1
t−k

]
= −E

[
log2 p(Xt|Xt−1

t−k , Y
t−1
t−k )

]
(3)

are the usual conditional entropies over the conditional (predictive) distributions p(xt|xt−1
t−k)

and p(xt|xt−1
t−k, y

t−1
t−k). This formulation was originally developed in [41], where trans-

fer entropy was proposed as an information theoretic measure of directed information
flow. Formally, recalling that H

[
Xt|Xt−1

t−k
]

is the uncertainty in Xt given its values at
the previous k time points, and that H

[
Xt|Xt−1

t−k , Y
t−1
t−k

]
is the uncertainty in Xt given

the joint process {(Xt, Yt)} at the previous k time points, transfer entropy measures
the reduction in uncertainty of Xt by including information about Y t−1

t−k , controlling
for the information in Xt−1

t−k . By the ‘conditioning reduces entropy’ result [7]

H[X|Y,Z] ≤ H[X|Y ], (4)

we can see that transfer entropy is always non-negative, and is zero precisely when
H
[
Xt|Xt−1

t−k
]
= H

[
Xt|Xt−1

t−k , Y
t−1
t−k

]
, in which case knowing the past k lags of Yt

does not reduce the uncertainty in Xt. If the transfer entropy is positive, then {Yt} is
considered causal for {Xt} in the Granger sense [15].

In estimating the transfer entropy from finite data, we will assume that the process
(Xt, Yt) is jointly stationary, which gives us that

p(xt|xt−1
t−k) = p(xk+1|xk

1) (5)

and

p(xt|xt−1
t−k, y

t−1
t−k) = p(xk+1|xk

1 , y
k
1 ) (6)

for all t. That is, the predictive distribution only depends on the past, not on when the
past is observed1. Given this assumption, we compute estimators for p(xk+1|xk

1) and
p(xk+1|xk

1 , y
k
1 ) by ‘counting’: for each possible past (xk

1 , y
k
1 ), we count the number of

times a future of type xk+1 occurs, and normalize. Call these estimators p̂(xk+1|xk
1)

and p̂(xk+1|xk
1 , y

k
1 ). Then the plug-in estimator for the transfer entropy is

T̂E
(k)

Y→X = Ĥ
[
Xt|Xt−1

t−k
]
− Ĥ

[
Xt|Xt−1

t−k , Y
t−1
t−k

]
(7)

1We really only need conditional stationarity [4], but stationarity implies conditional stationarity.
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where we use the plug-in estimators Ĥ
[
Xt|Xt−1

t−k
]

and Ĥ
[
Xt|Xt−1

t−k , Y
t−1
t−k

]
for the en-

tropies. It is well known that the plug-in estimator for entropy is biased [36]. To account
for this bias, we use the Miller-Madow adjustment to the plug-in estimator [29].

For the communities based on transfer entropy, we weight each edge from a user u
to a follower f by the estimated transfer entropy of the user u on f ,

w
TE(k)
u→f = T̂E

(k)

X(u)→X(f). (8)

A positive value for the transfer entropy of the user u on f indicates that u influences
f , or that u and f share a common influencer [44].

Operationally, we expect users to interact with Twitter on a human time scale, and
thus the natural one-second time resolution is too fine since most humans do not write
tweets on the time scale of seconds. We coarsen each time series by considering non-
overlapping time intervals ten minutes in length. For each time interval, we record a 1
if the user has tweeted during that time interval, and a 0 if they have not. Thus, the new
coarsened time series now captures whether or not the user has been active on Twitter
over any given ten minute time interval in our data set. We then compute the transfer
entropy on these coarsened time series taking k to range from 1 to 6, which corresponds
to a lag of ten minutes to an hour. The choice of lag must balance a trade-off between
additional information and sparsity of samples: as we increase the lag, we account for
longer range dependencies, but we also decrease the number of samples available to
infer a higher dimensional predictive distribution. Ultimately, due to similarities in the
underlying communities we chose a lag-4 transfer entropy. All references to activity-
based weights, unless otherwise noted, refer to this choice of lag.

Interaction-Based Communities and Mention / Retweet Weighting
Retweets and mentions are two useful features of Twitter networks which can be used to
track information flow through the network. With mentions users are sending directed
information to other users and with retweets users are rebroadcasting information from
a user they follow to all of their followers. This type of information flow defines a
community in a much different way than transfer entropy. Instead of defining commu-
nities by the loss of uncertainty in one user’s tweeting history based on another’s, we
define interaction-based communities by weighting the user-follower network with a
measure proportional to the number of mentions and/or retweets between users. For
the interaction-based communities we consider three weighting schemes: proportional
retweets,

wR
u→f = pR =

# retweets of u by f

# total retweets made by f
, (9)

proportional mentions,

wM
u→f = pM =

# mentions of f by u

# total mentions of f
, (10)

and mention-retweet as the arithmetic mean of these two measures,

wMR
u→f =

(pM + pR)

2
. (11)
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Topic-Based Communities and Hashtag Weighting
The final community we consider is a topic-based or topical community, i.e., a com-
munity defined by the content (topics) users discuss. So in a topical community, users
are defined to be a member of a community if they tweet about similar topics as other
members of the community. In order to detect the topical communities, we weight the
edges of the user-follower network through a measure based on the number of com-
mon hashtags between pairs of users. Hashtags are a good proxy for a tweet’s content
as hashtags are explicitly meant to be keywords indicating the topic of the tweet. More-
over they are widely used and straightforward to detect.

To this end, we characterize each user u by a vector ~h(u) of length equal to the
number of unique hashtags in the dataset, and whose elements are defined as

hi(u) = ni(u) ∗ log
N

ni
(12)

where ni(u) is the frequency of hashtag i occuring in user u’s tweets, N is the total
number of users, and ni is the number of users that have used the hashtag i in their
tweets. This adapted term frequency–inverse document frequency (tf-idf) measure [40]
captures the importance of a hashtag in the users’s tweets through the first factor, but
at the same time smooths it through the second factor by giving less importance to
hashtags that are too widely used (as N

ni
approaches one, its logarithm approaches

zero).
For the topical communities we weight each directed edge from a user u to a fol-

lower f with the cosine similarity of their respective vectors ~h(u) and ~h(f):

wHT
u→f =

~h(u) · ~h(f)
||~h(u)|| ||~h(f)||

. (13)

This weight captures the similarity between users in terms of the topics discussed in
their tweets.

Results and Discussion

Comparing Aggregate Statistics of Community Structure
We begin by examining the overall statistics for the communities inferred by OSLOM
using the weightings defined in the previous sections. The number of communities
by community type is given in Table 1. We see that the topic- and interaction-based
networks admit the most communities. The activity-based network admits the least
number of communities. One advantage of the OSLOM over many other community
detection algorithms is that it explicitly accounts for singleton ‘communities’: those
nodes who do not belong to any extant communities. This is especially important when
a network is collected via a breadth-first search, as in our network, where we begin
from a seed node and then branch out. Such a search, once terminated, will result
in a collection of nodes on the periphery of the network that may not belong to any
community in the core.
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We see in Table 1 that the topic- and interaction-based communities have the most
singletons, with the activity-based community dominating this measure. This result for
the activity-based community is partially an artifact of a property of the retweet/mention
weighting: 717 of the users were disconnected from the network by how the weights
were defined, resulting in ‘orphan’ nodes which we have included in the collection of
singletons for all of our analyses. However, even after accounting for this artifact, the
interaction-based network still has the most non-orphan singletons. This seems to in-
dicate that a large fraction of the 6917 (nearly 25%) do not interact with each other
in a concerted way that would mark them as a community under our interaction-based
definition. This agrees with a result previously reported in [37] about how most users
passively interact with incoming information on Twitter.

Table 1: Number of non-singleton communities and singletons by community type:
S(tructural), A(ctivity-based), T(opic-based), and I(nteraction-based).

Community Type # of Communities # of Singletons
S 201 308

A, Lag 1 101 951
A, Lag 2 99 600
A, Lag 3 106 611
A, Lag 4 105 668
A, Lag 5 107 632
A, Lag 6 106 642

T 289 1064
I 252 2436 (1719)

Next we consider the distribution of community sizes across the community types.
The complementary cumulative distribution of community sizes is given in Figure 1.
Note that both axes are plotted on log-scales. Thus, for a fixed community size c, Fig-
ure 1 shows the proportion of communities of size greater than c for each community
type. We see that the community distributions have longer tails for the non-structural
networks, and that the interaction-based network has the longest tail. The largest com-
munities for the structural, activity-based, topic-based, and interaction-based networks
have 198, 358, 338, and 811 members, respectively. Most importantly, we see that the
distributions of community sizes differ across the community types, highlighting that
the different networks give rise to different large-scale community structure dependent
on the particular weighting of the structural network.

Comparing Community Structure with Normalized Mutual Infor-
mation
In the previous section, we saw that the large scale statistics of the communities were
highly dependent on the type of community under consideration. However, macroscale
network statistics do not account for differences in community structure that result from
operations such as splitting or merging of communities. Moreover, this view does not
account for which users belong to which communities, and in particular which users
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Figure 1: The proportion of communities greater than c in size, across the different
community types. Note the logarithmic scale on the horizontal and vertical axes.

belong to the same communities across community types. To answer this question,
we invoke methods for the comparison of clusters: given two different clusterings of
nodes into communities, how similar are the two clusters? The standard approach to
answering this question is to define a metric on the space of possible partitions. Because
we detect coverings rather than partitions, standard cluster comparison metrics like
variation of information [27] are not appropriate. Instead, we use a generalization of
variation of information first introduced in [23], the normalized mutual information.
The normalized mutual information stems from treating clustering as a community
identification problem: given that we know a node’s community membership(s) in the
first covering, how much information do we have about its community membership(s)
in the second covering, and vice versa? Consider the two coverings C1 and C2. We
think of the community memberships of a randomly chosen node in C1 as a binary
random vector X ∈ {0, 1}|C1| where the ith entry of the vector is 1 if the node belongs
to community i and 0 otherwise. Similarly, Y ∈ {0, 1}|C2| is a binary random vector
indicating the community memberships of the node in C2. Then the normalized mutual
information is defined as

NMI(C1, C2) = 1− 1

2

(
H[X|Y]

H[X]
+

H[Y|X]

H[Y]

)
(14)

where H[·] denotes a marginal entropy and H[·|·] denotes a conditional entropy. The
normalized mutual information varies from 0 to 1, attaining the value of 1 only when
C1 and C2 are identical coverings up to a permutation of their labels. See the appendix
of [23] for more details.

We considered the normalized mutual information between the communities in-
ferred from the structural network and the networks weighted with lag 1 through 6
transfer entropies, hashtag similarity, and mention, retweet, and mention-retweet activ-
ity. The resulting NMI(Ci, Cj) are shown in Figure 2. We see that similarity between the
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coverings is dictated by the generic community type (structural, activity-based, etc.).
That is, the transfer entropy coverings are more similar to each other than to any of
the other coverings, with a similar result for the mention, retweet, and mention-retweet
coverings. Interestingly, the coverings resulting from the different weightings are all
more similar to each other than to the structural covering from the unweighted net-
work. Also note that the covering based on the hashtag similarities are different from
all of the other weight-based coverings.
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Figure 2: The normalized mutual information between the coverings inferred from the
different community types. Community type 0 corresponds to the structural communi-
ties, community types 1 through 6 correspond to the activity-based communities with
lag 1 through 6 transfer entropies, community type 7 corresponds to the topic-based
communities, and community types 8, 9, and 10 correspond to the interaction-based
communities using mentions, retweets, and both mentions and retweets. Values of nor-
malized mutual information close to 1 indicate similarity in the community structure,
while values close to 0 indicate dissimilarity. The normalized mutual information is
computed with singletons and orphan nodes included.

Thus, we see that although the activity-based, interaction-based, and topic-based
communities relied on the structural network, their community structure differs the
most from the community structure of the follower network. This agrees with the re-
sults from the previous section, and reinforces that the follower network is a necessary
but not sufficient part of detecting communities characterized by properties beyond
follower-followee relationships.

Comparing Edges Across Different Community Types
We next explore how the edge weights defined by equations (8), (11), and (13), and thus
different forms of information flow, differ between community types. For a fixed com-
munity type, edges for a particular community may be partitioned into three sets: those
from a user in the community to another user in the community (internal-to-internal),
those from a user in the community to a user outside of the community (internal-to-
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external), and those from a user outside the community to a user inside the commu-
nity (external-to-internal). See Figure 3 for a schematic of this edge partitioning. For
a meaningful community, we expect the distribution of weights within the community
(internal-to-internal weights) to be different from the distribution of weights without
the community (internal-to-external and external-to-internal).

Figure 3: An example of the edges considered in determining the edge weight distri-
bution for a given community (the focal community is in yellow). We focus on the
internal-to-internal (red), internal-to-external (green), and external-to-internal (blue)
edges. For a given focal community, all other edges (grey) are not considered.

As an example, Figure 4 shows the distributions of hashtag-based weights for the
largest community in the mention-retweet network. We see that the distribution of
internal-to-internal hashtag weights has a longer tail than either the external-to-internal
or internal-to-external hashtag weights, with edges within the community having higher
weights than edges crossing the boundary of the community. Thus, while the com-
munity was defined in terms of interactions, we still see a shift in the distribution of
topic-similarity.

This change in the tail of the distribution between edge types was typical of many
of the community type / weight pairings. A useful summary statistic to quantify the
change involves the median weights across the three types of edges, as demonstrated in
Figure 4. In particular, by computing the ratio of the median weight for the internal-to-
internal edges to the median weight for the internal/external-to-external/internal edges,
we can quantify the ratio change in weight strength internal vs. external to a commu-
nity. We computed this quantity for each of the top 100 largest communities defined
by a particular community type (structure-based, activity-based, interaction-based, or
topic-based), and report the median value across the 100 largest communities for each
type in Table 2. This statistic represents the typical ratio shift for each community type
/ weight pairing. Values greater than 1 indicate that the edge weights tend to be higher
within the community, and values less than 1 indicate that the edge weights tend to be
higher for those edges crossing the community boundary.

We see that for every weight type except transfer entropy, the weight on edges inter-
nal to the communities tend to be higher than on edges entering or exiting the commu-
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Figure 4: The proportion of edges with a weight at least as large as the weight on the
horizontal axis, across the types of edges described in Figure 3. The community is
defined by user interactions, and the edge weights are determined by topic similarity.
The dashed vertical lines indicate the median weight for each type of edge. Note the
logarithmic scale on the horizontal axis.

nities, ranging from a factor of 1.5 times larger for the activity-based/mention-retweet
pairing to a factor of 28 times larger for the topic-based/hashtag similarity pairing. As
stated above, we expect this ratio to be high for community / weight pairings that match
(e.g. considering mention-retweet weighting for interaction-based communities), and
we see that this is the case for all but the activity-based / transfer entropy pairing. More-
over, for both the mention-retweet and hashtag weightings, the ratio is largest when
they match with the interaction-based and topic-based communities, respectively.

For all four community types, the transfer entropy tended to be higher for edges
crossing community boundaries than for those internal to community boundaries. Re-
call that the transfer entropy TEX(u)→X(f) quantifies the reduction in uncertainty about
a follower f ’s activity from knowing the activity of a user u. This result therefore im-
plies that, in terms of prediction, it is more useful to know the time series of a user
followed outside of the community compared to a user followed inside of the commu-
nity. Thus, in an information theoretic sense, we see that novel information useful for
prediction is more likely to flow across community boundaries than within community
boundaries.

Note that the communities defined by the follower network do tend to have higher
edge weights internal compared to across community boundaries. Thus, we do see that
the structural communities capture some information about the functional behavior
of communities of users in terms of topics and interaction. However, the ratio is not
as large as when we explicitly seek out communities based on a particular type of
functional community. This again emphasizes the importance of properly formulating
the goal of a community detection study in the context of online social networks.
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Table 2: The median value across the 100 largest communities for the ratio of the me-
dian internal-to-internal weight to the median external-to-internal / internal-to-external
weight for the different community / weight pairings. For each entry a/b in the ta-
ble, a corresponds to median ratio value for edges external-to-internal, and b corre-
sponds to the median ratio value for edges internal-to-external . Community types cor-
respond to S(tructural), A(ctivity-based), T(opic-based), and I(nteraction-based) com-
munities. Weight types correspond to T(ransfer) E(ntropy), M(ention-)R(etweet), and
H(ash)T(ag). Note: For mention-retweet weights, zero weight edges were excluded
from the computation of the median. We indicate such cases with an asterisk.

Weight Type
TE MR HT

Community

S 0.96/0.94 1.7/2.1* 9.0/8.0

Type

A 1.0/0.96 1.5/2.4* 24/17
I 0.83/0.86 3.2/4.4 10/8.5
T 0.9/0.89 2.4/2.6* 28/26

Qualitative Analysis of Community Memberships Across Types
As demonstrated by [13] in the context of modularity maximization-based community
detection, an exponential number of nearby partitions may exist that nearly maximize
an objective function used to measure the goodness-of-fit of a graph partition used for
community detection. Because of this and related issues, it is always wise to perform
some sort of qualitative study of the communities returned by any community detection
algorithm to verify their meaningfulness with respect to the scientific question at hand.
In this section, we consider a collection of communities in such a study.

In the topic-based communities, we find a single community consisting of 83 users
who tweet about environmental issues and frequently use hashtags such as #green, #eco
and #sustainability. We also find a different community of 47 users who tweet about
small businesses and entrepreneurship, using hashtags such as #smallbiz, #marketing
and #enterpreneur. In both cases most members of the topic-based communities are
not found in the same community in the other networks, indicating that while these
people talk about the same things and can therefore be considered a community based
on their content, they do not strongly interact with each other nor behave the same, and
so belong to different social groups with respect to interactions and behavior.

Another interesting example is a community whose topics tend to focus on Denver
and Colorado. These users do not belong to the same community in the interaction-
based network, but most of them do belong to the same community in the activity-based
network. This indicates that these users react to the same events and issues regarding
Colorado and are therefore strongly connected in the topic-based and activity-based
networks, but at the same time they do not directly interact with each other and are
therefore more loosely connected in the interaction-based networks, where they belong
to different communities. As expected, among the most influential users (in terms of
transfer entropy) we find Colorado, which is the state official Twitter account, Con-
nectColorado, a page created to connect Coloradans, and CBS Denver account.

Last but not least, it is interesting noticing that in the top ten most influential users
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(ranked using the total outgoing strength in the activity-based network) we find two
users (Ann Tran and Jessica Northey) that were listed by Forbes in the ”Top 10 Social
Media Influencers”.

Conclusion and Future Work
In this study, we have demonstrated that the communities observed in online social
networks are highly question-dependent. The questions posed about a network a priori
have a strong impact on the communities observed. Moreover, using different defini-
tions of community reveal different and interesting relationships between users. More
importantly, we have shown that these different views of the network are not revealed
by using the structural network or any one weighting scheme alone. By varying the
questions we asked about the network and then deriving weighting schema to answer
each question, we found that community structure differed across community types on
both the macro (e.g. number of communities and their size distribution) and micro (e.g.
specific memberships, comemberships) scale in interesting ways.

To verify the validity of these communities we demonstrated that boundaries be-
tween communities represent meaningful internal/external divisions. In particular, con-
versations (e.g. retweets and mentions) and topics (e.g. hashtags) tended to be most
highly concentrated within communities. We found this to be the case even when the
communities were defined by a different criterion from the edge weights under study.

At first glance the boundaries defined by the activity-based communities derived
from the transfer entropy weighting seemed less meaningful. However, upon further
investigation our novel use of transfer entropy for the detection of activity-based com-
munities highlighted an important fact about this social network: influence tended to be
higher across community boundaries than within them. This result echos the ‘strength
of weak ties’ theory from [16], which has found empirical support in [14] for online
social networks. This means that our use of transfer entropy not only defines bound-
aries that are meaningful divisions between communities but also illustrates that users
who have a strong influence on a community need not be a member of that community.

Our findings have important implications to a common problem in social network
analysis: identification of influential individuals. Many network measures of influence
are based on the various types of centrality (degree, betweenness, closeness, eigen-
vector, etc.) [31]. Most centralities depend explicitly on the structure of the network
under consideration. But we have seen in our study that a structural network alone is
not sufficient to capture user interaction or influence in online social media. Thus, a
naı̈ve application of centrality measures to a structural network for influence detection
may give rise to erroneous results. This result has been explored previously [20], and
our work further highlights its importance. We believe that weighted generalizations of
these centralities using transfer entropy might lead to better insights about who is ac-
tually influential in an online social network. In addition to exploring this phenomenon
further, we plan to explore a broader selection of choices for both the transfer-entropy
lag and tweet history time resolution. We believe that by doing an in-depth analysis of
both of these parameters we can discover interesting activity-based communities that
occur on much broader time scales.
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This work demonstrates that asking the proper question and then crafting an ap-
propriate weighting scheme to answer that question is an unavoidable first step for
community detection in online social media. More generally, this work illustrates that
without a clear definition of community, many rich and interesting communities present
in online social networks remain invisible. Question-oriented community detection can
bring those hidden communities into the light.
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